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Abstract—In this work a novel high efficiency, low-cost and
low-complexity RF-to-dc converter was designed for RF energy
harvesting in the 2.4 GHz band. The proposed design has two
RF inputs and maintains a high efficiency over a wide range
of incoming incident wave angles. The circuit is based on a
Wilkinson power combiner and has two single-diode rectifiers.
One rectifier is connected at the combiner’s output and collects
the energy coming from the two inputs. The second rectifier
replaces the isolation resistor of the combiner in order to collect
the power that would otherwise be dissipated in it. The second
rectifier is used for recycling the wasted power when the input
signals do not have the same phase. The novel RF-to-dc converter
was fabricated using commercially available components and low-
cost FR-4 substrate. A prototype was designed and its efficiency
was optimized for low power input levels. The measured system
efficiency was 16.2% for in-phase input signals with available
input power −17 dBm. When the relative phase of input signals
varied from 0 to 360 degrees, a variation in efficiency between
15.3% and 22% was observed. For input power 3 dBm, the
efficiency varies from 26% to 39% between 0 to 360 degrees
phase difference.

Index Terms—Internet-of-Things (IoT), radio frequency (RF)
energy harvesting, radio frequency identification (RFID), recti-
fier, Wilkinson divider, wireless power transfer.

I. INTRODUCTION

IN our days radio frequency (RF) energy harvesting is an
atractive way to capture power in conditions where light

or wind sources are not available [1]–[4]. Broadcasting RF
transmitters like FM/TV, cellular networks base stations, WiFi
routers, and frequency identification (RFID) readers, have been
increasing rapidly around us, due to the huge development of
wireless technologies. In 1964 William C. Brown proposed
a system for transformation of RF power to dc power [5].
In this RF-to-dc converter, an antenna is combined with a
rectifier, which consists of one or more diodes in specific
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configuration, forming a rectenna. One significant limitation in
rectenna design is the relatively low available ambient power
density level as well as the RF-to-dc power efficiency of the
circuit [4], [6]. It remains an engineering challenge how to
capture unused ambient RF energy and use it to supply small
sensor nodes, such as radio frequency identification (RFID)
tags [4], [7], [8]. Interest in Internet of Things (IoT) low-power
sensors powered by RF ambient power or wireless power
transmission has increased due to the vision of ubiquitous
sensing as part of 5G mobile networks. Wireless powering in
the 2.4 GHz industrial, scientific and medical (ISM) band can
enable applications where a large number of mobile devices
with WiFi/Bluetooth transceivers can act as RF sources to
power the sensors.

In most 5G industrial visions, the high energy efficient
“Green” performance for 5G systems is pointed out as a
necessity both for devices and networks. Consequently RF
energy harvesting seems to be a very promising technique for
future 5G “Green” systems. In this case, nearby relays are
considered which include wireless power transfer capabilities
together with the RF communication signals. Millimeter-wave
(mmWave) signals could deliver both information and energy
to the end small devices, like next generation RFIDs [9], [10].
Such, an RFID device, capable of operating autonomously and
with a reading range of tens of meters, would provide a very
effective interface point between the IoT and 5G networks
[11].

This paper addresses the problem of RF versus dc power
combining in rectenna array systems. Increasing the number
of antennas and therefore the effective area available for
collection of RF energy is a straightforward approach in order
to increase the total RF energy that is being harvested. Due to
the nonlinear nature of the rectifier circuit however, when the
RF energy which is being available to the individual rectenna
element is very small, the RF-to-dc conversion efficiency of
the rectifier is also very small leading to a non-optimal per-
formance. Therefore, not only the overall number of rectenna
elements but the RF power available to each element is
important in order to maximize the system efficiency and
ultimately the dc output power. As a result, one might first
consider rectenna elements where one rectifier is connected to
an antenna array thereby achieving superposition of RF energy
before the RF-to-dc conversion. For example in [12], the
concept of an N×N staggered pattern charge collector (SPCC)
is described in order to achieve maximum energy harvesting
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Fig. 1. Power combiner circuits with rectification capabilities. a) Typical
Wilkinson combiner circuit. b) Wilkinson combiner circuit with single rectifier
c) Wilkinson combiner with two rectifier circuits. One rectifier has been
installed at the port 3 and the isolation resistor has been replaced with a
second rectifier.

efficiency. Using the above consent, more energy harvesters
and thus more diode elements are used in order to cover a
wideband area. Another disadvantage of this topology is that
superposition of RF energy corresponds to directive antenna
elements and one is not able to harvest RF energy coming from
different angular directions but only from selected angular
directions where the antenna array gain is maximized.

One way around this problem is to employ beam-steering
architectures but such systems consume energy in steering the
antenna beam and therefore one needs to take into account the
amount of energy spent in the beam steering process in order
to compute the overall RF-to-dc conversion efficiency of the
system. A different approach is to design a sub-array topology
where each sub-array is pointed to a fixed but different angular
direction. This way one achieves a high efficiency at a fixed
predetermined number of angular directions and a good overall
efficiency for a range of angular directions at the expense of
an increased complexity in the antenna [13].

In this work we demonstrate a scalable, two branch rectifier
which is capable of maintaining a constant RF-to-dc conver-
sion efficiency over any phase shift between the RF signals
present at its input terminals, and therefore over any angular
direction. This topology is able to combine RF energy from
any angular direction and convert it efficiently to dc output
power. It is based on a Wilkinson power combiner and it is
scalable, employing combiner modules connected to a large
number of antenna elements or sub-arrays and subsequently
combining the output in series or parallel configuration.

In addition to RF power combining our rectifier employs
dc power combining at 2.4 GHz by optimally combining the
output of two rectifiers in parallel. Our rectifier design could
be easily scaled up to mmWave frequencies (i.e. 60 GHz)
and miniaturized for a future 5G application. Therefore we
propose a rectifier module which provides RF and dc power
combining to achieve a high conversion efficiency with mini-
mum variation from RF signals with arbitrary phase, thereby

+ Pin1Vin1

Iin1

C1

L1

L2

+

VL

RL

L3

L4

L5

L6

C2

-

+ Pin2Vin2

Iin2

-

A) B)

Fig. 2. Circuit of the double design. Two single rectifiers (dash rectangle)
have been combined using a common load RL.

utilizing a nonlinear device to maintain both a high gain and
an omnidirectional characteristic for a rectenna.

Some research efforts have been made in harvesting using
Wilkinson combiners or dividers. In [14], a rectenna design is
proposed and integrated with RFID sensors to harvest ambient
power from the RF devices operating in the 2.4 GHz ISM
band. The circuit consists of two diode pairs, a Wilkinson
power divider, storage and bypass capacitors and an impedance
matching circuit. Measured performance for the rectifier is
given and shown to be 70% efficient for high power signals
of 3 dBm. In [15], the researchers present results of an RF
energy harvester at 2.4 GHz WiFi-WLAN frequency band. A
Wilkinson’s circuit is used to combine the RF signals from two
patch antennas and supply a modified Greinacher rectifier. This
dc energy is stored in a super capacitor in order to supply on-
demand self-powered sensor nodes. The maximum efficiency
is measured to be 57.8% at 6 dBm input power. In [16], a
method for recycling the wasted power in the isolation resistor
of a Wilkinson power combiner is presented when the input
signals are not identical. A rectifier is used to replace the
isolation resistor of the Wilkinson power combiner to recycle
the power that would originally be dissipated in the isolation
resistor. It is noticed that only one rectifier circuit is used
and the application is to improve the efficiency of power
amplifiers (PAs) configured as dual-phase pulse modulated
polar transmitters (PMPTs) and therefore it does not convert
the RF inputs to dc power.

Our proposed design works in 2.4 GHz ISM band and
combines two single diode zero-bias Schottky rectifiers with
a conventional Wilkinson circuit in order to be insensitive to
the angle of incidence of incoming waves. One rectifier was
connected at the output of the combiner. The isolation resistor
in the Wilkinson power combiner was replaced by the second a
half wave rectifier. To the best of our knowledge, this design
is unique because it is used only for RF energy harvesting
purposes. The measured RF-to-dc efficiency of the rectifier
array was calculated around 16% for in-phase input signals
with available input power −17 dBm. When the relative phase
of input signals varied from 0 to 360 degrees, a variation in
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efficiency between 15.3% and 22% was observed. Preliminary
results of this work were presented in [17]. A detailed analysis
of the circuit design and optimization is presented here,
followed by a number of additional measurements, including
efficiency versus load, frequency and phase difference at
different power input levels.

The structure of the paper is as follows: Section II provides
information about the Wilkinson power combiner circuit. Sec-
tion III describes the design and implementation of RF-to-dc
converter. Section IV presents proof-of-concept experimental
results using two continuous signals with different phases.
Section V provides the comparison of our work with other
similar works at the same frequency band. Finally, section VI
includes concluding and future remarks.

II. WILKINSON POWER COMBINER

The conventional Wilkinson power combiner/divider
(Fig. 1, a) was invented around 1960 by Ernest Wilkinson
[18]. The combiner is ideally lossless when the two input
signals are in phase and have identical power (Pin,i), as the
combiner port 3 delivers an output power of 2Pin,i to the
matched output. When only one input signal with power
Pin,i exists, only Pin,i/2 of power is delivered to the output
and the other half of the power is dissipated in the isolation
resistor. Furthermore when the two input signals have a phase
difference then a significant amount of energy is dissipated at
the resistor.

Our proposed work, uses a Wilkinson combiner connected
with two singe-diode rectifier circuits for RF energy harvest-
ing. One rectifier is connected at the port 3 as depicted in
Fig. 1 (b) in order to deliver the sum of the power. This design
exploits the drawback with the non in-phase input signals
using a second RF-to-dc rectifier to replace the isolation
resistor as shown in Fig. 1 (c). Using this novel topology,
the energy that was originally going to be dissipated at the
100 Ω resistor can be captured and supply the load of the
system. The second rectifier guarantees wide angular range at
the RF inputs. The circuit is called “double” in the following
text, it is particularly simple and it can easily be fabricated
using lumped components on a printed circuit board (PCB).
For benchmarking purposes, a design with one rectifier and
an isolation resistor was also fabricated and it is referred as
“single”.

III. RF-TO-DC CONVERTER

A. Design

Our initial goad was to increase efficiency and decrease
complexity of the circuit. For this reason only one diode was
used in each rectifier circuit, since double diode rectification
circuits increase losses [19], [20]. For each rectifier, the low-
cost Schottky barrier diode SMS7630-040LF from Skyworks
Solutions was selected due to its low capacitance of 0.3 pF
and the low forward voltage [21]. Since the maximum power
transfer occurs when the circuit is matched with the input,
impedance matching was performed at a particular available
input power of −20 dBm for each input port. The rectifiers
were matched to operate simultaneously using a common load

TABLE I
CIRCUIT COMPONENTS FOR THE DOUBLE DESIGN

Name Value SMD Package Type Model

L1 5.1 nH 0603 0603CS-5N1X EU
L2 2.2 nH 0603 0603CS-2N2XJ EU
L3 210 nH 0603 0603CS-R21X EU
L4 5.6 nH 0603 0603CS-5N6X EU
L5,6 1.8 nH 0603 0603CS-1N8XJEU
C1,2 100 pF 0402 -
RL 1588 Ω Potentiometer -

Diode Lp = 0.7 nH, Cp = 0.25 pF SC-79 SMS7630-079LF
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Fig. 3. The two fabricated designs on low cost FR-4 substrate. Left: The
“double” design includes two rectifiers. Right: The “single” design includes
one rectifier and one isolation resistor.

at the output and the layout of the rectification circuit is shown
in Fig. 2. As noted earlier, the RF-to-dc converter consists
of two rectifiers with their impedance matching circuits, a
Wilkinson power combiner, a storage capacitor (C1) and a
load (RL) at the output. The matching circuits reduce the
reflection losses of the incoming waves, while the capacitor C1
was introduced in order to stabilize the obtained dc voltage.
Finally, the output power supplies the load RL.

The proposed rectenna was designed and fabricated on a
FR-4 substrate in order to decrease the total cost of the design,
The FR-4 characteristics were: εr = 4.58, tan δ = 0.022,
copper thickness 35 µm and substrate height 0.6 mm.

B. Simulation & Optimization

The converter was designed for operation at 2.4 GHz
frequency taking into account the Wi-Fi, Bluetooth as well
as RFID systems work at ISM 2.4 GHz band. The design
were simulated using the Keysight Technologies ADS software
with harmonic-balance (HB) analysis. Initially a fixed layout
with only the microstrip traces was created and simulated
electromagnetically with the method of moments at 2.4 GHz.
The goal was to estimate the losses from the low-cost FR-
4 substrate and copper and the electromagnetic coupling be-
tween the two input ports. Next the layout model was imported
into a schematic design and lumped component models were
connected with the layout model. HB analysis was applied
after that, taking into consideration simultaneously the losses
of the substrate, the conductive lines, the components and
the non-linear behaviour of the rectifiers due to the diodes.
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Multi-objective optimization was used during the simulation
process with degrees of freedom only the inductor lumped
elements (L) and load RL. The first optimization goal was the
maximization of RF-to-dc efficiency:

η =
Pout

Pin
=

V 2
L /RL

Pin,1 + Pin,2
, (1)

with Pin,1,2 the available power at the two input ports of
rectifier, Pout the power at load and VL the voltage across
the load RL. In order to achieve better accuracy in the
optimization procedure, a second goal was utilized which was
the minimization of reflection coefficient at each input port:

Γin,i =
Zin,i − 50

Zin,i + 50
, (2)

assuming input impedance of 50 Ω and Zin,i = Vin,i/Iin,i with
i = 1, 2. The optimization design parameters were not only the
matching network components but also the value of the load
at the output. Considering that in a realistic RFID system, the
load value is up to 50 kΩ [22], our design could be optimized
for a given load value instead of an optimal one. As it is shown
in the Section IV, every Pin level has an optimum load and
thus this approach would be sub-optimum for the efficiency
maximization.

After the initial optimization, the ideal lumped elements
were progressively replaced by real product S-parameter mod-
els provided by the supplier (Coilcraft) and the circuit was
re-optimized. The final values and part numbers of the chip
inductors and capacitors are given in Table I. The capacitances
C1, C2, and the power Pin,i at both inputs ports were fixed
at 100 pF and −20 dBm respectively. The obtained optimal
lumped element values for the “double” circuit were found
as L1 = 5.1 nH, L2 = 2.2 nH, L3 = 210 nH, L4 = 5.6 nH,
L5,6 = 1.8 nH and RL = 1588 Ω. For the “single” design, only
the L1, L2 and C1 components were used with same values as
“double” design. In the “single” converter, the second rectifier
(Fig. 2, B) was replaced with the 100 Ω isolation resistor and
the optimum load was found at RL = 1759 Ω.

C. Fabrication

For validation purposes, the RF-to-dc converters were fab-
ricated as is depicted in Fig. 3. On the right, the PCB of
“single” design is depicted. The “double” is shown on the left
and contains an extra rectifier instead of the isolation resistor
in order to collect the dissipated energy. The design on the
right was fabricated for comparison purposes with the design
on the left as it can be seen in the next section.

IV. EXPERIMENTAL RESULTS

A. In-Phase Input Measurements

The two converters were measured using a vector network
analyser (VNA) at frequencies 1.5 GHz to 3.5 GHz. The
input signals were the carrier wave (CW) tones of VNA
with Pin,1,2 = −20 dBm. The measured S parameters of the
“single” and “double” design are shown in Fig. 4 and Fig. 5,
respectively. It is shown that the reflection coefficient at each

1.5 2 2.5 3
Frequency (GHz)

-25

-20

-15

-10

-5

0

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t (

dB
)

S
11

S
22

S
21

S
12

Fig. 4. S-parameters of “single” design. The VNA available input power
(Pin,i) at each port was fixed at −20 dBm.
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Fig. 5. S-parameters of “double” design. The VNA available input power
(Pin,i) at each port was fixed at −20 dBm.

port (S11 and S22) is bellow −10 dB at the center frequency
of 2.4 GHz.

Regarding in-phase input RF signals, a commercial Wilkin-
son power divider was connected to a signal generator for the
efficiency measurements. The divider outputs were connected
with board inputs through two “same-length” RF cables. First,
a power meter (Keysight U8487A) was connected to each
cable, measuring the received power of the signal. Next, the
power meter was removed and cables were connected to the
proposed “double” design. The total power, Pin, is considered
as the sum of Pin,1 and Pin,2 which are the two divider
output ports. A voltmeter measures the voltage across the
load, which is fixed at 1588 Ω. Fig. 6 depicts the measured
results of η versus Pin for the “double” design. The efficiency
is equal to 29.46% and 9.93% for Pin equal to −9 dBm and
−21 dBm, respectively. The maximum efficiency was achieved
for Pin = 2 dBm and it was found at 37%. Fig. 7 shows the
measured voltage values across the 1588 Ω load. VL is equal
with 51 mV for Pin = −21 dB and 240 mV for Pin = −9 dBm,
respectively. Fig. 8 presents the relation between the efficiency
and the load only for the “double” design using three power
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Fig. 6. Measurement rectifier efficiency of “double” design versus the
available input power (Pin). The two input signals have the same phase at
the frequency of 2.4 GHz.
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Fig. 7. Measured output voltage of “double” converter across the 1588 Ω
load. The two input signals have the same phase at the frequency of 2.4 GHz.

input levels, with the frequency fixed at 2.4 GHz. In this case,
a commercial potentiometer was used for the load variation
instead of a fixed resistor. It is obvious that there is a specific
value for the load that maximizes the efficiency for each Pin
value. More specifically, for Pin = −7 dBm and Pin = 3 dBm,
maximum efficiency is equal to 27.76% and 39.3% for 1487 Ω
and 706 Ω load, respectively. For Pin = −17 dBm, the
maximum efficiency occurs when RL ' 1554 Ω as was
expected from the simulation results. The measured efficiency
versus frequency for different Pin and load fixed at 1554 Ω, is
depicted in Fig. 9. It is shown that “double” converter operates
optimally at 2.4 GHz for Pin = −17 dBm, as expected from
the initial design. Also the maximum efficiency is achieved
at points very close to 2.4 GHz for the rest of power levels.
As can observed from all above figures, there is a non-linear
relation of the efficiency versus the Pin, the frequency, as well
as load due to the diodes non-linearities.

B. Out-of-Phase Input Measurements

Finally, the two designs were simulated and tested for input
signals with different phase each one. Each board was con-
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Fig. 8. Measured “double” rectifier efficiency versus load for different
available input power at 2.4 GHz.
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Fig. 9. Measured “double” rectifier efficiency versus frequency for different
power input levels. Load is fixed at 1559 Ω.

Wilkinson Design

Potensiometer

Source 1

Source 2

Fig. 10. Two signal generators measurement setup. The one generator has
a fixed zero phase 2.4 GHz signal. The second generator was used for the
phase sweeping.

nected with two synchronized signal generators simultaneously
as depicted in Fig. 10 setup. The generator outputs were
connected with boards through the same RF cables that were
used in previous results. The first generator was used for phase
change from 0 to 360 degrees thus at the second generator,
the phase of the signal was fixed at 0 degrees. In Fig. 10 the
voltmeter and the potentiometer are also depicted.
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Fig. 11. Simulated and measured converter efficiency versus phase difference
at the input. The input signals had frequency 2.4 GHz with Pin = −17 dBm.
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Fig. 12. Measured converter efficiency versus phase difference at the input.
The input signals had frequency 2.4 GHz with Pin = 3 dBm.

Fig. 11 shows the efficiency achieved for Pin = −17 dBm
and phase difference from 0 to 360 degrees. The load for
“double” design was fixed at 1554 Ω and for “single” at
1759 Ω. Very good agreement between simulation and mea-
surements is observed for both designs. For the “single”
design, the efficiency is maximized when the input signals
are in-phase. Moreover the efficiency goes to zero when the
phase different is 180 degrees and retreated periodically every
360 degrees. The “double” design addresses the problem of
the power dissipation on the isolation resistor and when the
inputs signals are out of phase. A constant efficiency it is
observed between 15.31% and 21.9% from 0 to 360 degrees.
In Fig. 12 the measured efficiency versus the phase difference
for Pin = 3 dBm is depicted. The optimal load for the “double”
and “single” design was experimentally found at 1022 Ω and
909 Ω respectively based on the data shown in Fig. 8. The
topologies have similar behaviour for a higher Pin, as shown in
Fig. 11. The maximum efficiency of “double” was measured
at 39.02% at 180 degrees and the minimum was 26.2% at
300 degrees. Moreover the “single” had maximum efficiency
48.61% at zero degrees. Finally the efficiency for Pin = 8 dBm
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Fig. 13. Measured converter efficiency versus phase difference at the input.
The input signals had frequency 2.4 GHz with Pin = 8 dBm.

TABLE II
RF-TO-DC EFFICIENCY FOR FREQUENCY 2.4 GHZ.

Work Type Ph. Diff. (Deg.) Eff. (%) Pin (dBm)
[13] Rectifier 0 43% −10

[13] Rectifier 0 10% −17

[23] Rectenna 0 50% −17.2

[24] Rectenna 0 38.2% −19.2

[24] Rectenna 0 15.3% −9.2

[25] Rectenna 0 15.7% −20

[25] Rectenna 0 42.1% −10

[26] Rectenna 0 24% −17

[26] Rectenna 0 55% −7

[27] Rectenna 0 37% −25.7

[28] Rectenna 0 31.8% −15

This work Rectifier 0 32% −7

This work Rectifier 0 18.5% −17

This work Rectifier 180 21.9% −17

This work Rectifier 300 15.3% −17

is shown in Fig. 13. The loads for “single” and “double”
designs were fixed at 653 Ω and 774 Ω, respectively. It can be
observed that although the Pin has been increased from 3 dBm
to 8 dBm, the maximum efficiency cannot go over 40% for
the “double” and over 47.8% for the “single” design, due to
the breakdown effect of the diodes.

The number of diode elements in the circuit has a major
influence on the output voltage of the energy harvesting circuit.
Due to the fact that the diodes do not operate as ideal switches,
when the number of diodes increases the total power dissipated
in the diodes increases. This has an impact in the RF-to-dc
conversation efficiency especially at low input power levels.
Consequently, a rectifier circuit with one diode present a higher
efficiency than a rectifier circuit with two diodes at low input
power level [19]. This is also evident in Fig. 11 when the
efficiency of the “single” design is higher than the efficiency
of the “double” design.

V. DISCUSSION

Table II offers summary of achieved efficiency versus input
power for various prior art designs operating at the 2.4 GHz
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band. We compare rectifiers/rectennas with our design for the
in-phase conditions only, however it should be emphasized
that our work focused on optimizing efficiency under non in-
phase excitation. In order to further increase the efficiency,
substrates with low losses [23]–[26] have been proposed.
In [23], efficiency was increased to 50% for −17.2 dBm
input power level. A circular polarized rectenna was presented
in [24] with 15.3% and 11.3% efficiency for vertical and
horizontal polarization, respectively. In [25], a dual polarized
rectenna consists of a square aperture coupled patch antenna
and a rectifier circuit that was optimized at 2.45 GHz with
simulated efficiency 15.7% at −20 dBm. In [26] a rectenna is
proposed that is formed by a miniaturize 2nd iteration Koch
fractal patch antenna and a two-stage Dickson charge pump
rectifier. The rectenna achieves a small size with relatively high
realized gain (4 dBi) and good conversion efficiency around
24% at −17 dBm. In [27] a fully integrated remotely powered
RFID chip is described working at 2.45 GHz. The necessary
input power to operate the transponder is about 2.7 µW. The
efficiency of the rectifier circuit is about 37% for −25.7 dBm
input power including the antenna effects. In [28], an opti-
mized rectenna structure is presented which eliminates the
matching circuit and exhibits the optimal rectifier architecture.
The antenna has been configured as an inductively-coupled-
feed dipole and it is directly matched to the input impedance of
the rectifier. Can be noticed that all the above designs provide
efficient results only for in-phase signals.

In [13] a design approach for RF energy harvesting to re-
ceive more energy in a wide incident angle range is presented.
A beam-forming matrix and a dc power management network
are used to the hybrid (RF and dc) power combining. To
experimentally verify the proposed hybrid combining array
performance, four suspended patch antennas were attached to
the RF energy harvesting architecture. More specifically a 4×4
Butler matrix and quadrature hybrids are used for the beam-
forming matrix in a hybrid power combining rectenna array.
Each port of Butler matrix with 4× 4 array antenna has fixed
peak gain at a fixed incident wave angle.

Instead of all the designs, the challenge for this work was
to design an efficient rectification circuit, working in a wide
incident angle range. Our design uses the minimum number
of inputs and discrete lumped elements in order to maintain
a constant RF-to-dc efficiency over a wide angular range
compared to the other designs of table II.

VI. CONCLUSION & FUTURE WORK

In this work, we present a rectifier circuit for RF energy
harvesting. Our rectifier combiner do RF power combining
and dc power combining in order to achieve a high conversion
efficiency with minimum variation from RF signals with
arbitrary phase, thereby maintaining both a high gain and
an omnidirectional characteristic for a rectenna. A prototype
was fabricated on low-cost FR-4 substrate and measurements
agreed with simulations.

Nowadays, one of the major research goals is to over-
come fundamental challenges related to the miniaturization
of electronic circuits in order to scale them up in mmWave

frequencies. The mmWave communications is a key can-
didate technology for future 5G cellular networks. This is
mainly due to the availability of large spectrum resources at
higher frequencies, which leads to much higher data rates.
Transferring wireless energy, in mmWave frequencies seems
attractive for future applications where base stations with di-
rectional beamforming capabilities could supply miniaturized
low-power devices like RFID tags. The base station/reader
could align its narrow beams with the tags in order to supply
them with power and the same signals could be also used
for the communication links. The proposed system could be
miniaturized and applied on passive RFID tag implementations
in order to collect energy from multiple directions. Our novel
circuit could be also combined with a retro-directive antenna
array such a Van Atta array in order to reradiate the signal
back to the reader [29]–[31] and at the same time harvest
a maximum amount of power independently of the angle of
arrival of the incoming reader signal.
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