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ABSTRACT

This paper presents a digital replica of a satellite communication system. To correctly depict end-to-end
connectivity, a rudimentary flight software package around an imaging payload is built using NASA JPL’s
F Prime framework. For radio communication, a custom implementation of the AX.25 protocol is built
in Python and implemented into a GNU Radio block. In GNU Radio, an appropriate signal processing
chain for up and downlink is set up. The resulting flow graph can be used fully digitally, for simulation or
be connected to software defined radios for true, over-the-air communication. The Python implementation
performs sufficiently well for a low data rate, real time, duplex connection. Through two USRP devices
and two laptops, acting as satellite and ground station respectively, reliable end-to-end communication is
achieved. All software tools used for this work are open source, resulting in an affordable and accessible
package and versatile starting point for testing, prototyping and educational purposes.

INTRODUCTION

CubeSats have emerged as a popular and cost-
effective platform for space missions, enabling uni-
versities, research institutions, and commercial enti-
ties to deploy increasingly sophisticated payloads,
including remote sensing, atmospheric measure-
ments, astrophysics, space laboratories, and technol-
ogy demonstrators.1 Even extraterrestrial missions
to the moon have been achieved,2,3 highlighting once
again how capable the CubeSat platform is. On
the other side of the spectrum, it is used more and
more widely as an educational platform and to build
skills and knowledge by universities and student-
led teams. A recent success story of that approach
is EIRSAT-1, developed at the University College
Dublin.4,5

Despite their compact form factor and constrained
resources, CubeSats form complex systems, tailored
to fulfill specific mission objectives. Developing and
validating these systems remains a significant chal-
lenge, particularly given the limited access to flight-
like hardware and realistic testing environments dur-
ing early development phases. Next to a large selec-
tion of commercial off-the-shelf options, from com-
ponents to full CubeSat as a Service solutions,6,7

open source tools have become increasingly available
to alleviate these difficulties. Flight software frame-
works such as NASAs F Prime (F’) offer a flight-
proven, modular architecture for onboard software
development, while GNU Radio, in conjunction with

software defined radios, enables flexible prototyping
and testing of custom communication systems on the
ground.
This work presents a complete digital prototype of
a CubeSat communication system. The system in-
tegrates a basic F Prime-based flight software ap-
plication with a simulated payload using a web-
cam, generating image data and telemetry that is
passed into a custom GNU Radio flow graph. This
flow graph features a custom implementation of the
AX.25 protocol and Gaussian Minimum Shift Key-
ing (GMSK) modulation/demodulation, along with
the signal processing required to retrieve binary data
from the radio frequency (RF) signal. Universal
Software Radio Peripherals8 (USRP) enable over-
the-air and cable-connected transmission. The end-
to-end setup establishes a functional communication
link between a simulated CubeSat and a ground
station running the F Prime Ground Data System
(GDS), demonstrating a low-cost and reproducible
approach to prototyping CubeSat communication
architectures using accessible, open-source technolo-
gies.

COMMUNICATION SYSTEM ARCHI-
TECT

To form a representative depiction of a satellite
link chain, all core aspects have to be modelled.
In the scope of this paper, the starting point for
that is the satellite’s payload and data handling sys-
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tem. As elaborated, the CubeSat platform is highly
flexible. Missions and payloads differ significantly,
making it impossible to depict all of them accurately.
Thus, the decision is made to choose a payload and
supporting system that is simple to implement yet
functionally representative. Earth observation mis-
sions are still relevant for both commercial9 and
academic10 uses and do not necessitate purchasing
specialized instruments to emulate the payload. So
a webcam as the simplest form of imaging payload
is selected.
Following a review of open source flight software
frameworks for command and data handling, F
Prime is chosen for the onboard software. While
others were considered, the combination of ready-
to-use solutions and good documentation led to
the decision. The communication system uses the
AX.25 protocol operating in the UHF range. Other
communication protocols, namely the CCSDS suite
and DVB-S2, were considered as well, but the sim-
plicity and support by the amateur radio network
make the AX.25 protocol the most suitable for this
application. It is still used in CubeSats, as seen in
Orbit NTNU’s SelfieSat mission11 or Arizona State
University’s Phoenix CubeSat.12 For the digital sig-
nal processing tasks, from the packet payload to the
RF signal and vice versa, GNU Radio is used, and
the resulting satellite twin system is constructed as
seen in figure 1. In the following, an overview of
these parts of the system is given.

Figure 1: Parts and Functionalities of the
Satellite Twin System

F Prime

F Prime (F’) is an open source flight software
framework developed by NASA Jet Propulsion Lab-
oratory (JPL) made for use in small satellite systems
and instrumentation.13 The framework implements
a modular architecture of components connected
through typed ports that form a topology. It in-
cludes a variety of ready-to-use components that are
common in most space systems and are flight-proven
through multiple missions. Additionally, F Prime
comes with a Ground Data System for testing.14

A further feature is an autocoder that generates
template code based on a high-level description us-
ing a specialised modelling language called F Prime
FPrime (FPP) for a clean syntax. F Prime also fea-
tures tools to compute dependencies, check models
and visualise the topology.15

AX.25

The AX.25 protocol is a packet radio protocol
developed for the amateur radio community.16 It
describes frame structures and procedures for link
establishment, information transfer, error handling
and recovery. In terms of the Open Systems Inter-
connection (OSI) model, the protocol is located in
layer two, the data link layer. It contains no defi-
nition for the physical layer, however variations of
frequency shift keying (FSK) at 1200 and 9600 baud
rate have become the standard.17,18,19 In the proto-
col, terminal node controllers (TNC) communicate
as peers through a controlled connection. It defines
three main frame types Information, Supervisory,
and Unnumbered - the latter two with several sub-
types. Information frames contain actual payload
data, supervisory frames are used for link control
during information transfer and unnumbered frames
govern link establishment and termination, and al-
low for connectionless information transfer without
link control. For the link control, each TNC con-
tains three internal state variables, the send state
variable V(S), receive state variable V(R) and ac-
knowledge state variable V(A). They keep track of
the next send sequence number N(S) to be assigned
to frame, the next expected sequence number to be
received and the last frame acknowledged by the
other TNC respectively. This acknowledgment hap-
pens through communication of the remote TNC’s
V(R) as the received sequence number N(R) in a
frame. When an offset between the TNC’s V(R)
and the received N(S) occurs, this indicates a frame
sequence error and a lost or faulty frame, leading
to retransmission. The difference between V(S) and
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V(A) is used to limit the amount of acceptable out-
standing frame acknowledgments. This makes sure
link control stays intact. Erroneous frames are de-
tected through the frame-check sequence added to
each frame, which is calculated through a 16 bit
cyclic redundancy check (CRC).16

Any AX.25 connection can be broken down into four
parts: Link establishment, parameter negotiation,
information transfer and link disconnection. Start-
ing from a disconnected state, a TNC may request a
connection or respond to a link request. If accepted,
both TNCs negotiate the connection parameters and
enter the information transfer phase. At any point,
a TNC may request to disconnect and return to the
disconnected state.16

GNU Radio

GNU Radio is a free & open-source software de-
velopment toolkit that provides signal processing
blocks to implement software radios.20 It can be used
on its own to simulate radio connections or with RF
hardware, such as the Universal Software Radio Pe-
ripheral8 (USRP). Through GNU Radio, radio com-
munication systems can be developed, simulated and
deployed using modular flow graphs of connected
blocks. These range from simple mathematical oper-
ations to complex signal processing like modulation
or bit timing recovery. This enables flexible solutions
independent of the hardware solution. For satellite
communications in particular, it has found use for
CubeSat ground stations, offering all the necessary
signal processing.21

On top of a variety of signal data types for signal
streams, GNU Radio features Protocol Data Units
(PDU) for asynchronous message passing. These can
also be used to connect external interfaces.22 Next
to the GNU Radio core repository, users are free to
build their own out-of-tree modules to add specific
functionalities, many of which are available, includ-
ing for satellite and ground station specific uses.23,24

SUBSYSTEM DEVELOPMENT AND IN-
TEGRATION

Flight Software

To represent the satellite, an F Prime based flight
software is built. In addition to the ready-to-use
components, a custom one is developed to add the
functionality of taking pictures upon command. For
access to drivers and file encoding, the open source
computer vision library OpenCV (version 4.9) is
used.25

The custom component uses 9 standard ports, reg-
isters one command and has two events defined. It
waits for a command to take a picture, then accesses
the camera hardware, grabs and encodes the picture
and writes it to a file. The flow graph is visualised
in figure 2.

Figure 2: Program Flow of the Custom F
Prime Component

The final deployment topology consists of 26
components: The custom one and 25 standard com-
ponents from the default topology. Amongst other
things, these enable telemetry, file up and down-
link and the TCP/IP connection. In the standard
procedure for TCP/IP, both the flight software and
ground data system run on the same machine. To
have a remote connection instead, they are executed
separately on two machines, connecting to a TCP
server on a loopback address provided by the GNU
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Radio flow graph. There, protocol procedures and
signal processing take place.

AX.25 Protocol Implementation

For the digital implementation of AX.25, only
the information transfer phase is covered and rejec-
tion type is limited to implicit reject (REJ). This is
deemed sufficient for the system in mind, since as all
parameters of the connection are known. Setting up
and breaking down of the connection is not neces-
sary for the use case. The implementation is written
in Python using the bitstring library to work on the
binary data. The general architecture of the AX.25
implementation in GNU Radio is visualised in figure
3. It consists of 6 parts: The GNU Radio block itself
and 5 classes separating the protocol’s functionali-
ties. Starting with the GNU Radio block, this is how
the flowchart accesses the protocol features. It has
two PDU inputs (for a payload to be framed and a
received frame), two PDU outputs (retrieved data
and prepared frame) and 10 parameters to be set,
listed in table 1.

Table 1: AX.25 Block Parameters
Parameter Default
Source Address HWUGND
Source SSID 1
Remote Address HWUSAT
Remote SSID 1
Rejection Mode REJ
Module Mode 8
Information Field Length 2048
Receive Window Size 7
Acknowledge Window (seconds) 3
T1 Retries 10

Input into the block is appended to their respec-
tive input lists in the Transceiver class.
The Transceiver class forms the core of the data link
state machine. It holds the TNCs connection pa-
rameters taken from the GNU Radio block and the
AX.25 state variables, contains links to the other
class instances and helper variables, such as a back-
log of sent frames for error recovery. To enable true
duplex communication, the other classes run in sep-
arate threads. The Transceiver holds the threading
lock and events for inter-thread communication, and
provides methods for thread-safe access to the rele-
vant variables. Lastly, it sets up a log to keep track
of the status of the connection. It is used for both
debugging purposes and to log warnings and errors
that occur during operation.
The protocol procedures are managed by the Up-

and Downlinker classes. Each governs one direction
of the link and has its own independent thread of ex-
ecution. The Uplinker class waits for data packets to
be sent. It keeps track of the permissible unacknowl-
edged frames, calls the Framer classes framing func-
tion, and pushes prepared frames to associated the
output port. The Downlinker class receives incom-
ing frames and calls the Framers deframing function
and handles the correct response to any incoming
frame.
The Framer class separates the frame preparation
and specific field formats from the implementation of
the procedures. It contains functions that frame in-
coming data into an AX.25 frames and deframe them
to extract all relevant information. The TNC state
variables are also update in the Framer functions
upon successful framing or deframing. The Framer
instance does not run in an independent thread.
It’s functions are called from the Up- or Downlinker
through the links set up in the Transceiver class
The Timer class implements the protocols timers T1
and T3. T1 is used to recover from frame losses that
are not covered by the rejection methods, such as a
singular I frame being lost at the end of a burst of
loss of a rejection frame that requests retransmis-
sion. T3 is used to keep the transceivers connected
during times without data transfer by periodically
polling the remote transceiver. While the protocol
defines 13 timers, only these two are deemed nec-
essary for this work. Timer T2 is optional,16 and
the other 10 govern specific parts of the link that
are not of concern for the scope of this work. The
class sets the timers and their control events up in
separate threads and defines response functions to
events being set and timers running out.

Modulation/Demodulation in GNU Radio

The GNU Radio flow graph emulates a satellite
radio following the specifications given for the AAC
Clyde Space Pulsar-VUTRX radio.19 This was cho-
sen, as it supports AX.25 natively and is available in
house. While testing a link between the Clyde Space
radio and this implementation was planned, it was
ultimately not feasible.
In the presented flow graphs, blocks appearing yel-
low, namely the scrambler and descrambler blocks,
are bypassed and do not contribute any signal pro-
cessing. The sending part of the flow graph, shown
in figure 4 accepts PDU messages from the AX.25
block as input. First, that is transformed into a byte-
type tagged stream for all further signal processing.
Following that, a Barker Sequence is added to the
front of the frame. A Barker Sequence is a binary se-
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Figure 3: Architecture of the AX.25 implementation

quence with perfect autocorrelation characteristics.
These are commonly used for frame synchronization
in digital communication systems.26 Since the AX.25
protocol defines its own synchronization sequence at
the beginning and end of a frame,16 the Barker se-
quence is used solely to improve the performance of
the timing recovery block on the receiving end. Op-
tionally, a scrambler can be used to scramble the
symbols, breaking up consecutive lines of 1 or 0 bits
to improve timing recovery. The suggested polyno-
mial is taken from James Millers 9600 baud radio:17

P(x) = 1 + x12 + x17 (1)

In this setup, scrambling is omitted though as better
performance was achieved without. Now that the
symbols are prepared, the GMSK Mod block per-
forms the GMSK modulation and generates the com-
plex I-Q samples at Baseband. The next steps are
taken to prepare the data for transmission through
the USRP. A Resampler block interpolates between
the sample values to bring the sample rate to a value
accepted by the USRP. Finally, the length tag of the
tagged stream is updated before sending the samples
to the USRP. This is required for the USRP to ac-

cept the incoming packet without error and transmit
the burst correctly.
The receiving part of the flow graph, shown in fig-
ure 5 begins with the I-Q samples coming from the
USRP. These are then downsampled to the process-
ing sample rate. To account for the offset between
the local oscillators in both radios and the accom-
panying carrier frequency offset (CFO), a Frequency
Lock Loop (FLL) using a band edge filter is used.
Then, the signal is extracted from the spectrum us-
ing a Band-pass filter. The last step before signal
demodulation is a squelch, that suppresses the noise
between signal bursts. Next, the Quadrature Demod
block is used to demodulate the complex, GMSK
modulated signal. As per the GNU Radio documen-
tation,27 the gain value is calculated via:

Gain =
fs

2π ·∆f
(2)

With fs being the sample rate and ∆f the fre-
quency deviation. The resulting symbols are then
passed through a Root Raised Cosine Filter to
smoothen the signal. Although this is not the cor-
rect matched filter for GMSK, the availability and
ease of use of the GNU Radio block justify its use.
The method still performs well in preparing the sig-
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Figure 4: Sending Part of the GNU Radio flow graph

Figure 5: Receiving Part of the GNU Radio flow graph
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nal for timing recovery. The Symbol Sync block then
recovers bit timing to extract bit values at the de-
sired bit rate from the symbol stream. GNU Radio’s
Symbol Sync block does feature two MSK-specific
clock recovery algorithms by D’Andrea and Men-
gali,28,29 however so far using the Modified Mueller
and Müller algorithm30 yields the best results. Be-
fore being sliced into discrete bits, the signal is
shifted by a constant value of −0.01. This is not
strictly necessary, but it ensures that fluctuations of
the signal around 0 after the signal burst are elim-
inated. If a scrambler was used, then the bit val-
ues are passed through a descrambler before assem-
bling the full byte. Finally, a custom frame extractor
block searches for the AX.25 frame flag, which de-
limits a frames beginning and end. The extracted
frame is then passed as a PDU to the AX.25 proto-
col block.

PERFORMANCE

Initially, the performance of the protocol imple-
mentation is tested using a fixed, 20 byte payload.
This is done through the connection of two GNU
Radio blocks in a fully digital environment without
packet loss or bit errors. Only one sends I frames,
while the other listens and responds accordingly.
The test runs in GNU Radio on a laptop with a
12th Gen Intel Core i5-1245U and 16 GB of mem-
ory. The time required between input of the payload
PDU and output of the prepared frame is listed in
table 2. The resulting data is calculated over 903
sent I frames. The times required to process an in-
coming I frame and reply correctly are listed in table
3. The performance of the implementation is consid-
ered sufficient to represent the low data radios that
typically use AX.25. To put it into perspective, the
transmit time for a non-information-bearing frame,
which has a minimum length of 136 bits through a
9600 baud radio is 14.16ms excluding the time re-
quired for the wave to travel to the receiver.
Fully assembled, the current setup is depicted in fig-
ure 6 with one laptop running the onboard software,
acting as the satellite and the other running the
ground data system. The radios are USRP N200 Se-
ries devices, set up to 869.45 MHz and 869.55 MHz
for up and downlink respectively. These are cho-
sen for over-air transmission in accordance with the
Ofcom requirements for license exempt short range
devices.31 All other radio parameters are listed in
table 4. In this setup, the radios don’t transmit
over the air, but are connected through co-axial ca-
bles with a 10 dB fixed attenuator and a variable
attenuator in-between. First over-the-air tests were

performed, but a lack of frequency appropriate an-
tennas hindered the performance. Figure 7 shows a
waterfall plot of the raw received spectrum at the
satellite’s end. Both the sending and receiving sig-
nal can be seen here. The extracted bandpass fil-
tered spectrum is visualised in figure 8, showing the
characteristic GMSK shape, with side lobes around
±10 kHz from the centre frequency. During a simu-
lated pass and radio frequency connection, the satel-
lite sent 564 information frames, received 33 rejec-
tion frames requesting retransmission and 5 super-
visory frames following timer timeout, totalling 38
sequence breaks. Assuming each sequence break is
caused by a single erroneous frame, that results in
a frame error rate of 6.74 %. That assumption is
deemed reasonable, as all observed sequence breaks
are caused by the receiver rejecting the frame due to
CRC errors caused by singular bit values. This can
still lead to multiple frames being resent, due to the
time it takes for the rejection to arrive back at the
sender.

Table 2: Time Performance of I Frame Prepa-
ration

Measuerment Time (ms)
Mean Value 2.674
Maximum Value 3.95
Minimum Value 0.72
Standard Deviation 0.467

Table 3: Time Performance of I Frame Reply
Measuerment Time (ms)

I Frame Processing
Mean Value 1.932
Maximum Value 3.35
Minimum Value 0.53
Standard Deviation 0.452

RR Frame Preparation
Mean Value 1.561
Maximum Value 2.65
Minimum Value 0.45
Standard Deviation 0.475

Table 4: USRP Parameters
Parameter Value
Sample Rate 1 MHz
Send/Receive Gain 20 dB
Automatic Gain Control Off
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Figure 6: Laboratory Setup of Two Laptops and Two USRP N200 Radios

Figure 7: Waterfall Plot of the Raw Received Spectrum at the Satellite Receiver
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Figure 8: Frequency Plot of the Filtered Narrowband Signal

CONCLUSION

In this project, a hybrid replica of a satellite
communication system was developed, demonstrat-
ing the integration of flight software, signal process-
ing, and radio communication. Starting with an ex-
emplary onboard software application using NASA
JPL’s F Prime framework and a laptop webcam as
a stand-in payload, a representative communication
system was built around a custom implementation
of the AX.25 protocol. The protocol implementation
into GNU Radio via Python has shown to perform
sufficiently well for a real-time, full-duplex connec-
tion. The signal processing through GNU Radio for
the transmit and receive side allows for a true remote
connection between two nodes through the flexible
USRP software defined radios. The system achieved
reliable end-to-end communication between a simu-
lated satellite and the F Prime Ground Data System,
effectively validating the interaction between space-
qualified software, real-time protocol handling, and
SDR-based transmission. All of this was achieved
using open source tools, resulting in an affordable
and accessible package. The open source nature of
this work makes it a great starting point to test and
develop small satellite systems, and as an education
tool to experiment with. The full source code is
available through github.32

Future developments will be on the inclusion of other
modes of frame retransmission. Further over-the-
air testing distances larger than in a laboratory are
planned. To enhance the level of realism, methods
to simulate a true satellite link, including Doppler
shift, varying signal strength over a pass and atmo-

spheric influence are envisioned.
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